The rate at which asexual populations cross fitness valleys.

نویسندگان

  • Daniel B Weissman
  • Michael M Desai
  • Daniel S Fisher
  • Marcus W Feldman
چکیده

Complex traits often involve interactions between different genetic loci. This can lead to sign epistasis, whereby mutations that are individually deleterious or neutral combine to confer a fitness benefit. In order to acquire the beneficial genotype, an asexual population must cross a fitness valley or plateau by first acquiring the deleterious or neutral intermediates. Here, we present a complete, intuitive theoretical description of the valley-crossing process across the full spectrum of possible parameter regimes. We calculate the rate at which a population crosses a fitness valley or plateau of arbitrary width, as a function of the mutation rates, the population size, and the fitnesses of the intermediates. We find that when intermediates are close to neutral, a large population can cross even wide fitness valleys remarkably quickly, so that valley-crossing dynamics may be common even when mutations that directly increase fitness are also possible. Thus the evolutionary dynamics of large populations can be sensitive to the structure of an extended region of the fitness landscape - the population may not take directly uphill paths in favor of paths across valleys and plateaus that lead eventually to fitter genotypes. In smaller populations, we find that below a threshold size, which depends on the width of the fitness valley and the strength of selection against intermediate genotypes, valley-crossing is much less likely and hence the evolutionary dynamics are less influenced by distant regions of the fitness landscape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate Migration Yields Optimal Adaptation in Structured, Asexual Populations

Most evolving populations are subdivided into multiple subpopulations connected to each other by varying levels of gene flow. However, how population structure and gene flow (i.e., migration) affect adaptive evolution is not well understood. Here, we studied the impact of migration on asexually reproducing evolving computer programs (digital organisms). We found that digital organisms evolve th...

متن کامل

The Evolution of a High Mutation Rate and Declining Fitness in Asexual Populations

Simulations of asexual populations undergoing continual adaptation present a definite prediction: mutator hitchhiking should drive the mutation rate upwards in an asexual population until it reaches an intolerable level, at which point the population will be driven extinct. Experimental studies have shown that a mutator allele can readily hitchhike to fixation with beneficial mutations in an as...

متن کامل

Complex role of space in the crossing of fitness valleys by asexual populations.

The evolution of complex traits requires the accumulation of multiple mutations, which can be disadvantageous, neutral or advantageous relative to the wild-type. We study two spatial (two-dimensional) models of fitness valley crossing (the constant-population Moran process and the non-constant-population contact process), varying the number of loci involved and the degree of mixing. We find tha...

متن کامل

Quantifying the Role of Population Subdivision in Evolution on Rugged Fitness Landscapes

Natural selection drives populations towards higher fitness, but crossing fitness valleys or plateaus may facilitate progress up a rugged fitness landscape involving epistasis. We investigate quantitatively the effect of subdividing an asexual population on the time it takes to cross a fitness valley or plateau. We focus on a generic and minimal model that includes only population subdivision i...

متن کامل

The rate of fitness-valley crossing in sexual populations.

Biological traits result in part from interactions between different genetic loci. This can lead to sign epistasis, in which a beneficial adaptation involves a combination of individually deleterious or neutral mutations; in this case, a population must cross a "fitness valley" to adapt. Recombination can assist this process by combining mutations from different individuals or retard it by brea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theoretical population biology

دوره 75 4  شماره 

صفحات  -

تاریخ انتشار 2009